Notice:	You cannot copy or search for text in this PDF file, because this PDF
	file is converted from the scanned image of printed materials.

P1 98.2

DATA SHEET

COMPOUND FIELD EFFECT POWER TRANSISTOR μ PA1556A

N-CHANNEL POWER MOS FET ARRAY SWITCHING TYPE

V V

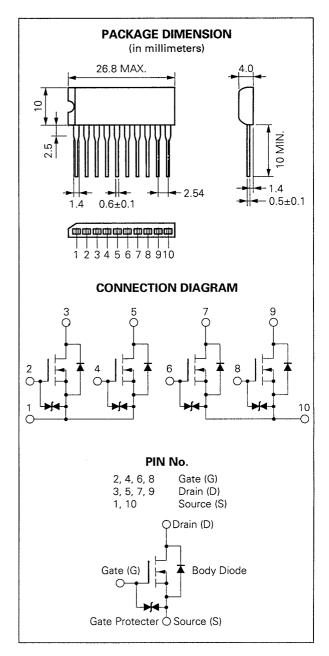
۰,

DESCRIPTION

The $\mu\text{PA1556A}$ is N-channel Power MOS FET Array that built in 4 circuits designed for solenoid, motor and lamp driver.

FEATURES

- 4 V driving is possible
- Large Current and Low On-state Resistance $I_{D(pulse)} = \pm 20 \text{ A}$ $R_{DS(on)} = 0.20 \Omega \text{ TYP.} (V_{GS} = 10 \text{ V})$ $R_{DS(on)} = 0.25 \Omega \text{ TYP.} (V_{GS} = 4 \text{ V})$
- Low Capacitance Ciss = 700 pF TYP.
- Gate Protecter built in.
- 2.54 mm Pitch (0.1 inch)


ORDERING INFORMATION

Part Number	Package	Quality Grade
μΡΑ1556AH	10 Pin SIP	Standard

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)					
Drain to Source Voltage	VDSS	100			
Gate to Source Voltage (AC)	Vgss	±20			
Cata ta Causa Malta a (DO)	11	00 40			

	Gate to Source Voltage (DC)	VGSS	+20,-10	V
	Drain Current (DC)	D(DC)	±5.0	A/unit
	Drain Current (pulse)	ID(pulse)*	±20	A/unit
	Total Power Dissipation (4 circ	uits)		
	<tc 25="" =="" °c=""></tc>	Pt1	28	W
	Total Power Dissipation (4 circ	uits)		
	<ta 25="" =="" °c=""></ta>	Pt2	3.5	W
	Storage Temperature	Tstg -	-55 to +150) °C
	Junction Temperature	Tj	150	°C
*	PW ≦ 10 µs, Duty Cycle ≦ 1 %			

Document No. IC-3348 Date Published January 1994 M Printed in Japan

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS	
Drain Leakage Current	loss			10	μΑ	Vds = 100 V, Vgs = 0	
Gate to Source Leakage Current	lgss			±10	μΑ	$V_{GS} = \pm 20 \text{ V}, \text{ VDS} = 0$	
Gate to Source Cutoff Voltage	VGS(off)	1.0		2.5	V	Vps = 10 V, lp = 1 mA	
Forward Transfer Admittance	yfs	4.0			S	Vps = 10 V, Ip = 3 A	
Drain to Source On-state Resistance	RDS(on)1		0.20	0.25	Ω	Vgs = 10 V, Id = 3 A	
Drain to Source On-state Resistance	RDS(on)2		0.25	0.33	Ω	Vgs = 4 V, Id = 3 A	
Input Capacitance	Ciss		700		pF	V _{DS} = 10 V V _{GS} = 0 f = 1.0 MHz	
Output Capacitance	Coss		200		pF		
Reverse Transfer Capacitance	Crss		30		pF		
Turn-On Delay Time	td(on)		35		ns	Ib = 3 A VGS = 10 V Vcc = 50 V	
Rise Time	tr		60		ns		
Turn-Off Delay Time	td(off)		800		ns	$R_{L} = 17 \ \Omega, R_{in} = 10 \ \Omega$ See Fig. 1	
Fall Time	tf		200		ns		
Total Gate Charge	QG		17		nC	Vgs = 10 V ID = 5 A VDD = 80 V	
Gate to Source Charge	Qgs		2.5		nC		
Gate to Drain Charge	Qgd		4		nC	See Fig. 2	
Diode Forward Voltage	VF(S-D)		1.0		V	IF = 5 A, VGS = 0	
Reverse Recovery Time	trr		120		ns	IF = 5 A, VGS = 0 di/dt = 50 A/μs	
Reverse Recovery Charge	Qrr		230		nC		

~ . . 001

Fig. 1 Switching Time Test Circuit

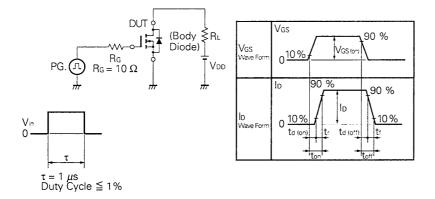
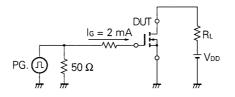
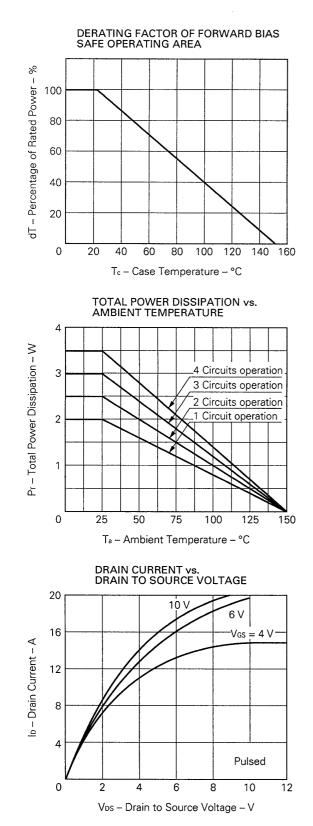
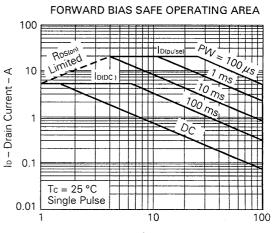
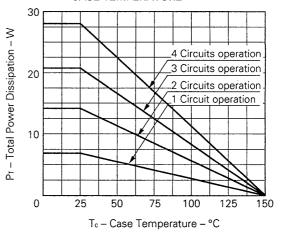
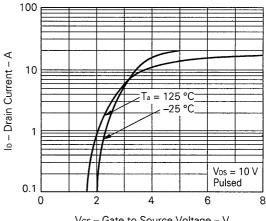
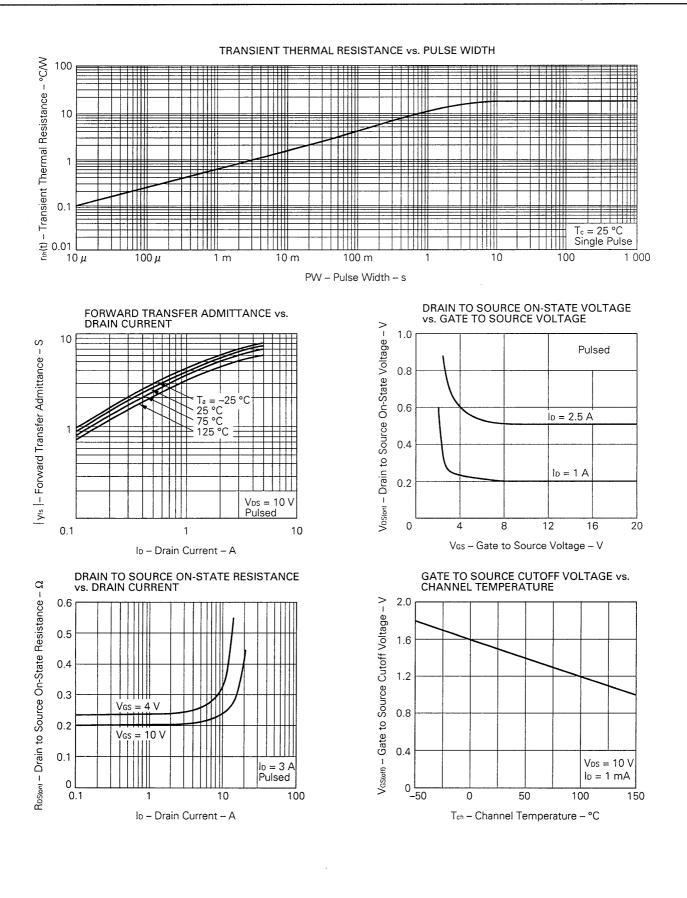
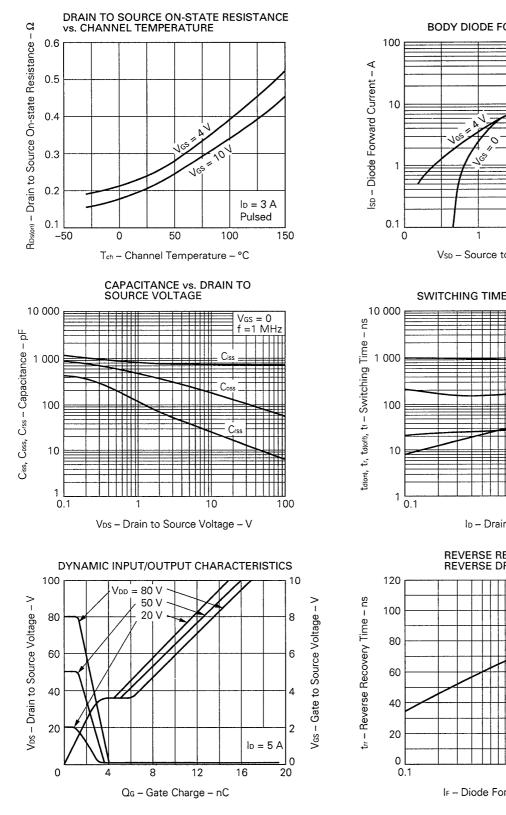





Fig. 2 Gate Charge Test Circuit

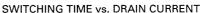

TYPICAL CHARACTERISTICS (Ta = 25 °C)

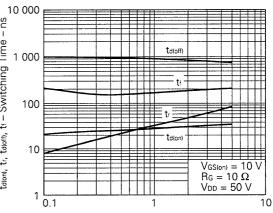


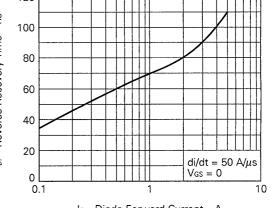

TOTAL POWER DISSIPATION vs. CASE TEMPERATURE



Vgs - Gate to Source Voltage - V




4


Ta = 25 °C Pulsed 2 3 Vsp – Source to Drain Voltage – V

ID - Drain Current - A

REVERSE RECOVERY TIME vs. REVERSE DRAIN CURRENT

IF - Diode Forward Current - A

5

Reference

Document name	Document No.
Quality control of NEC semiconductors devices.	TEI-1202
Quality control guide of semiconductors devices.	MEI-1202
Assembly manual of semiconductors devices.	IEI-1207
Safe operating area of Power MOS FET	TEA-1034
Appication circuit using Power MOS FET	TEA-1035

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation.NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation.

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.