HIGH SIDE SMART POWER SOLID STATE RELAY

Table 1. General Features

Туре	V _{DSS}	R _{DS(on)}	lout	Vcc
VN02NSP VN02NPT	60 V	0.4 Ω	6 A	26 V

- OUTPUT CURRENT (CONTINUOUS): 6A @ T_c=25°C
- 5V LOGIC LEVEL COMPATIBLE INPUT
- THERMAL SHUT-DOWN
- UNDER VOLTAGE SHUT-DOWN
- OPEN DRAIN DIAGNOSTIC OUTPUT
- VERY LOW STAND-BY POWER DISSIPATION

DESCRIPTION

The VN02NSP/VN02NPT are monolithic devices made using STMicroelectronics VIPower Technology, intended for driving resistive or inductive loads with one side grounded.

Built-in thermal shut-down protects the chip from over temperature and short circuit.

The input control is 5V logic level compatible.

The open drain diagnostic output indicates open circuit (no load) and over temperature status.

Figure 1. Package

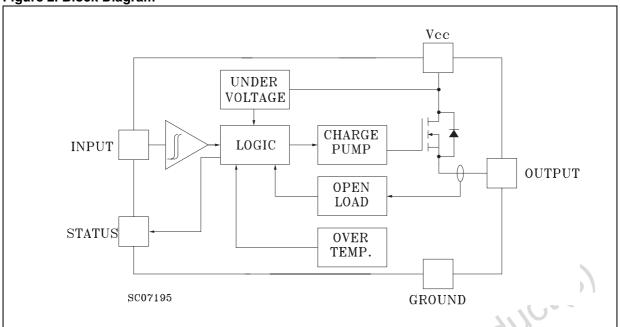


Table 2. Order Codes

Package	Tube	Tape and Reel
PowerSO-10	VN02NSP	VN02NSP13TR
PPAK	VN02NPT	VN02NPT13TR

REV. 2 June 2004 1/12

Figure 2. Block Diagram

Table 3. Absolute Maximum Ratings

Value	Davamatav	Symbol	
PowerSO-10 PPAK	Parameter		
60	Drain-Source Breakdown Voltage	V _{(BR)DSS}	
6	Output Current (cont.)	lout	
-6	Reverse Output Current	I _R	
±10	Input Current	I _{IN}	
-4	Reverse Supply Voltage	- V _C C	
±10	Status Current		
F) 2000	Electrostatic Discharge (1.5 kΩ, 100 pF) 2000		
58 46	Power Dissipation at T _c ≤ 25 °C	P _{tot}	
-40 to 150	Junction Operating Temperature	Tj	
-55 to 150	T _{stg} Storage Temperature		
-55 to 150	Storage Temperature	T _{stg}	

Figure 3. Connection Diagrams

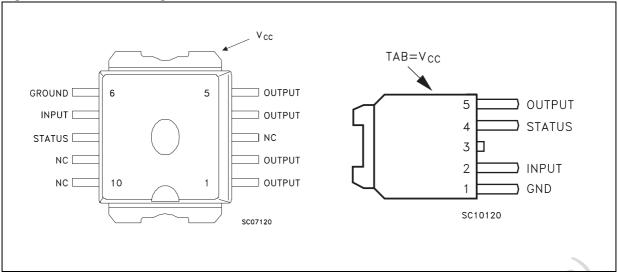
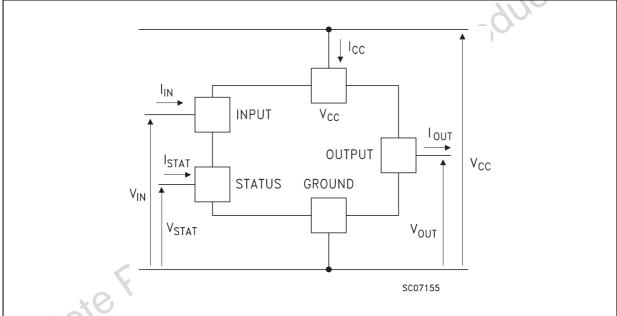



Figure 4. Current and Voltage Conventions

Table 4. Thermal Data

Symbol	Parameter		Va	lue	Unit
Symbol	Parameter		PowerSO-10	PPAK	Oille
R _{thj-case}	Thermal Resistance Junction-case	Max	2.14	3.33	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient ⁽¹⁾	Max	62.5	100	°C/W

Note: 1. When mounted using minimum recommended pad size on FR-4 board.

ELECTRICAL CHARACTERISTICS

(V_{CC} = 13 V; $-40 \le Tj \le 125$ °C unless otherwise specified)

Table 5. Power

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{CC}	Supply Voltage		7		26	V
R _{on}	On State Resistance	I _{OUT} = 3 A I _{OUT} = 3 A; T _j = 25 °C			0.8 0.4	Ω Ω
I _S	Supply Current	Off State; T _j ≥ 25 °C On State			50 15	μA mA

Table 6. Switching

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time Of Output Current	$I_{OUT} = 3 \text{ A}$; Resistive Load Input Rise Time < 0.1 μ s; $T_j = 25 ^{\circ}\text{C}$		10		μs
t _r	Rise Time Of Output Current	$I_{OUT} = 3 \text{ A}$; Resistive Load Input Rise Time < 0.1 μ s; $T_j = 25 ^{\circ}\text{C}$		15		μs
t _{d(off)}	Turn-off Delay Time Of Output Current	$I_{OUT} = 3 \text{ A}$; Resistive Load Input Rise Time < 0.1 μ s; $T_j = 25 ^{\circ}\text{C}$		15		μs
t _f	Fall Time Of Output Current	$I_{OUT} = 3 \text{ A}$; Resistive Load Input Rise Time < 0.1 µs; $T_j = 25 \text{ °C}$		6		μs
(di/dt) _{on}	Turn-on Current Slope	I _{OUT} = 3 A I _{OUT} = I _{OV}	21)	0.5 2	A/µs A/µs
(di/dt) _{off}	Turn-off Current Slope	I _{OUT} = 3 A I _{OUT} = I _{OV}			2 4	A/µs A/µs

Table 7. Logic Input

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{IL}	Input Low Level Voltage				0.8	V
V _{IH}	Input High Level Voltage	16)	2		Note 2	V
V _{I(hyst)}	Input Hysteresis Voltage	*(3)		0.5		V
I _{IN}	Input Current	V _{IN} = 5 V		250	500	μΑ
V _{ICL}	Input Clamp Voltage	I _{IN} = 10 mA I _{IN} = -10 mA		6 -0.7		V V

Note: 2. The V_{IH} is internally clamped at 6V about. It is possible to connect this pin to an higher voltage via an external resistor calculated to not exceed 10 mA at the input pin.

ELECTRICAL CHARACTERISTICS (cont'd)

Table 8. Protections and Diagnostics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{STAT} ⁽³⁾	Status Voltage Output Low	I _{STAT} = 1.6 mA			0.4	V
V _{USD}	Under Voltage Shut Down			6.5		V
V _{SCL} ⁽³⁾	Status Clamp Voltage	I _{STAT} = 10 mA I _{STAT} = -10 mA		6 -0.7		V V
t _{sc}	Switch-off Time in Short Circuit Condition at Start- Up	R_{LOAD} < 10 m Ω ; Tc = 25 °C		1.5	5	ms
lov	Over Current	$R_{LOAD} < 10 \text{ m}\Omega - 40 \le T_c \le 125 \text{ °C}$			28	Α
I _{AV}	Average Current in Short Circuit	R_{LOAD} < 10 m Ω ; Tc = 85 °C		0.9		Α
loL	Open Load Current Level		5		70	mA
T _{TSD}	Thermal Shut-down Temperature		140		dil	⊃ °C
T _R	Reset Temperature		125	All		°C

Note: 3. Status determination > 100 ms after the switching edge.

FUNCTIONAL DESCRIPTION

The device has a diagnostic output which indicates open circuit (no load) and over temperature conditions. The output signals are processed by internal logic.

To protect the device against short circuit and over-current condition, the thermal protection turns the integrated Power MOS off at a minimum junction temperature of 140 °C. When the temperature returns to about 125 °C the switch is automatically turned on again.

In short circuit conditions the protection reacts with virtually no delay, the sensor being located in the region of the die where the heat is generated.

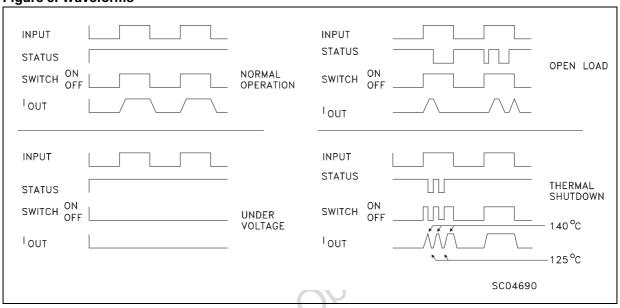
PROTECTING THE DEVICE AGAINST REVERSE BATTERY

The simplest way to protect the device against a continuous reverse battery voltage (-26V) is to insert a Schottky diode between pin 1 (GND) and ground, as shown in the typical application circuit (Figure 7).

The consequences of the voltage drop across this diode are as follows:

- If the input is pulled to power GND, a negative voltage of -V_F is seen by the device. (V_{IL}, V_{IH} thresholds and V_{STAT} are increased by V_F with respect to power GND).
- The undervoltage shutdown level is increased by V_F.

If there is no need for the control unit to handle external analog signals referred to the power GND, the best approach is to connect the reference potential of the control unit to node (1) (see application circuit in Figure 8), which becomes the common signal GND for the whole control board.


In this way no shift of V_{IH} , V_{IL} and V_{STAT} takes place and no negative voltage appears on the INPUT pin; this solution allows the use of a standard diode, with a breakdown voltage able to handle any ISO normalized negative pulses that occurs in the automotive environment.

477

Table 9. Truth Table

	Input	Output	Diagnostic
Normal Operation	L H	L H	H H
Open Circuit (No Load)	Н	Н	L
Over-temperature	Н	L	L
Under-voltage	X	L	Н

Figure 5. Waveforms

Figure 6. Over Current Test Circuit

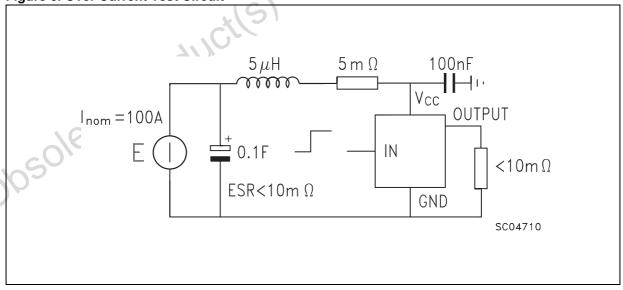
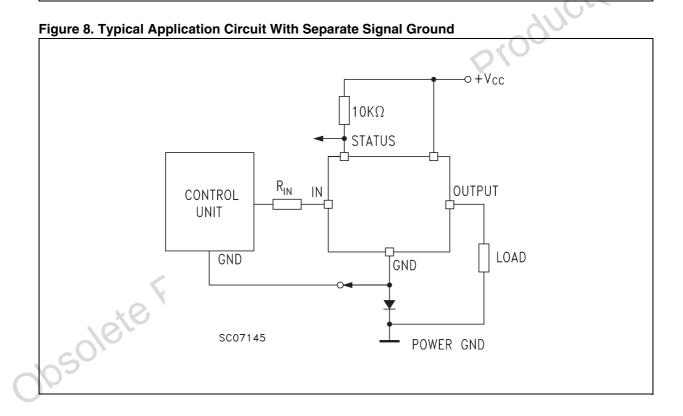



Figure 7. Typical Application Circuit With A Schottky Diode For Reverse Supply Protection Vcc INPUT VNXX STATUS GND Schottky -Diode LOAD SC04671 POWER GND

47/ 7/12

Figure 9. R_{DS(on)} vs Junction Temperature

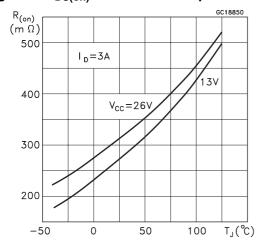


Figure 11. R_{DS(on)} vs Output Current

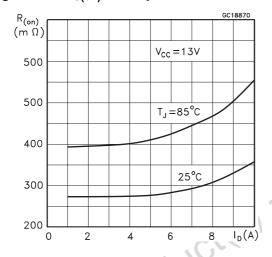


Figure 13. Output Current Derating

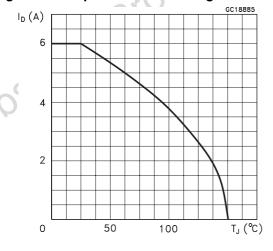


Figure 10. R_{DS(on)} vs Supply Voltage

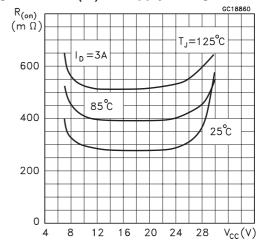


Figure 12. Input voltages vs Junction Temperature

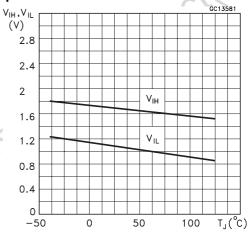
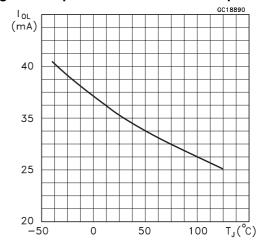
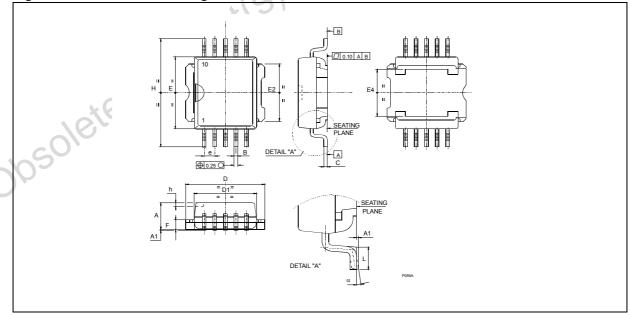



Figure 14. Open Load vs Junction Temperature

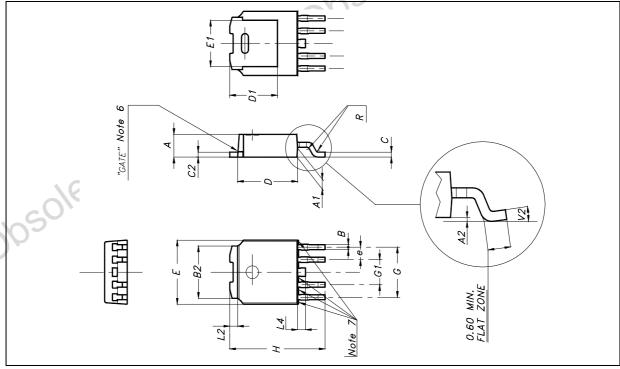


PACKAGE MECHANICAL

Table 10. PowerSO-10 Mechanical Data

Cumbal		millimeters	
Symbol	Min	Тур	Max
A	3.35		3.65
A (*)	3.4		3.6
A1	0.00		0.10
В	0.40		0.60
B (*)	0.37		0.53
С	0.35		0.55
C (*)	0.23		0.32
D	9.40		9.60
D1	7.40		7.60
E	9.30		9.50
E2	7.20		7.60
E2 (*)	7.30		7.50
E4	5.90		6.10
E4 (*)	5.90		6.30
е		1.27	1,10
F	1.25		1.35
F (*)	1.20		1.40
Н	13.80		14.40
H (*)	13.85		14.35
h		0.50	
L	1.20		1.80
L (*)	0.80	. 60	1.10
a	O _o	703	8 <u>°</u>
α (*)	2º) ~	8 <u>°</u>

Figure 15. PowerSO-10 Package Dimensions



Note: Drawing is not to scale.

Table 11. PPAK Mechanical Data

Cymhal		millimeters	
Symbol	Min	Тур	Max
Α	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
В	0.40		0.60
B2	5.20		5.40
С	0.45		0.60
C2	0.48		0.60
D1		5.1	
D	6.00		6.20
E	6.40		6.60
E1		4.7	
е		1.27	
G	4.90		5.25
G1	2.38		2.70
Н	9.35		10.10
L2		0.8	1.00
L4	0.60		1.00
R		0.2	
V2	O _ō	4.0.	8º
Package Weight		Gr. 0.3	1

Figure 16. PPAK Package Dimensions

Note: Drawing is not to scale.

REVISION HISTORY

Table 12. Revision History

Date	Revision	Description of Changes
September-1997	1	First Issue
18-June-2004	2	Stylesheet update. No content change.

Obsolete Product(s). Obsolete Product(s)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com